જો બુલિયન સમીકરણ $\left( {p \oplus q} \right) \wedge \left( { \sim p\,\Theta\, q} \right)$ એ $p \wedge q$ ને સમાન હોય જ્યાં $ \oplus $ , $\Theta \in \left\{ { \wedge , \vee } \right\}$ ,તો $\left( { \oplus ,\Theta } \right)$ =
$\left( { \vee , \wedge } \right)$
$\left( { \vee , \vee } \right)$
$\left( { \wedge , \vee } \right)$
$\left( { \wedge , \wedge } \right)$
આપેલ વિધાનનું સામાનર્થી પ્રેરણ લખો
" જો એક વિધેય $f$ એ બિંદુ $a$ આગળ વિકલનીય હોય તો તે બિંદુ $a$ આગળ સતત પણ હોય "
$p \wedge (\sim p) = c$ નું દ્વંદ્વ વિધાન કયું છે ?
$q \vee((\sim q) \wedge p)$ ની નિષેધ . . . . . ને તુલ્ય છે.
વિધાન $(p \Rightarrow q){\wedge}(q \Rightarrow \sim p)$ ને સમતુલ્ય વિધાન મેળવો.
$ \sim \left( {p\,\vee \sim q} \right) \vee \sim \left( {p\, \vee q} \right)$ ગાણાતીય તર્ક ની રીતે ........... સાથે સરખું થાય